...visualizing classifier performance in R

Tobias Sing, Ph.D. (joint work with Oliver Sander)
Modeling & Simulation
Novartis Pharma AG

3rd BaselR meeting (Oct 13, 2010)
Q: When can ROCR be useful for you?
Not only in machine learning!

- A: Whenever you want to evaluate a numerical score against a categorical (binary) outcome
 - “Does the score separate the two classes well?”

<table>
<thead>
<tr>
<th>Values</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0.98</td>
<td>+</td>
</tr>
<tr>
<td>0.84</td>
<td>+</td>
</tr>
<tr>
<td>0.71</td>
<td>+</td>
</tr>
<tr>
<td>0.69</td>
<td>-</td>
</tr>
<tr>
<td>0.69</td>
<td>+</td>
</tr>
<tr>
<td>0.64</td>
<td>+</td>
</tr>
<tr>
<td>0.62</td>
<td>+</td>
</tr>
<tr>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>+</td>
</tr>
<tr>
<td>0.39</td>
<td>-</td>
</tr>
<tr>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td>0.36</td>
<td>+</td>
</tr>
<tr>
<td>0.32</td>
<td>+</td>
</tr>
<tr>
<td>0.32</td>
<td>-</td>
</tr>
<tr>
<td>0.29</td>
<td>-</td>
</tr>
<tr>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td>0.00</td>
<td>-</td>
</tr>
</tbody>
</table>
Examples

(1) Markers of disease severity in psoriatic arthritis

Numerical score: numbers of swollen and tender joints

Categorical outcome: Clinical response of ACR20 improvement (yes/no)

From: Englbrecht et al, 2010
Examples

(2) HIV drug resistance

- Physicians count specific mutations in the HIV genome to predict whether the virus will be resistant or susceptible to antiviral therapy.

- e.g.: protease mutation list for SQV resistance from Int. AIDS Society
Examples

(3) Evaluating scoring output from machine learning approaches

- **Logistic regression**
 - `model <- glm(Y ~ X, family=binomial, A)`
 - `predict(model, data.frame(X=31),type='response')`

glaucoma	normal
0.9930342	0.0069658

- **Decision trees**
 - `m1 <- rpart(Class ~ . ,data=GlaucomaM)`
 - `predict(m1,X)`

glaucoma	normal
0.9210526	0.07894737
0.1200000	0.8800000

- **SVMs, Random Forests, ...**
Scoring classifiers

- Output: continuous score (instead of actual class prediction)
 - Example: Saquinavir (SQV) prediction with SVMs:
    ```r
    > m <- svm(sqv[,,-1], sqv[,1])
    > X.new <- sqv[1:2, -1]
    > predict(m, X.new)
    1 2
    TRUE TRUE
    Use distance to the hyperplane as numeric score:
    > predict(m, X.new, decision.values=TRUE)
    attr(,"decision.values")
      TRUE/FALSE
    1 0.9995974
    2 0.9999517
    
- If predictions are (numeric) scores, actual predictions of (categorical) classes depend on the choice of a cutoff c:
  - \( f(x) \geq c \Rightarrow \text{class } 1 \)
  - \( f(x) < c \Rightarrow \text{class } -1 \)

- Thus, a scoring classifiers induces a family \( \{ f_c \}_c \) of binary classifiers
### Binary classifiers (1/2)

**Prediction – outcomes**

<table>
<thead>
<tr>
<th>Predicted class</th>
<th>True class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>True positive (TP)</td>
</tr>
<tr>
<td>-1</td>
<td>False negative (FN)</td>
</tr>
</tbody>
</table>
### Binary classifiers (2/2)

**Some metrics of predictive performance**

- **Accuracy**: \( P(\hat{Y} = Y) \); estimated as \( (TP+TN) / (TP+FP+FN+TN) \)
- **Error rate**: \( P(\hat{Y} \neq Y) \); est: \( (FP+FN) / (TP+FP+FN+TN) \)
- **True positive rate (sensitivity, recall)**: \( P(\hat{Y} = 1 \mid Y = 1) \); est: \( TP / P \)
- **False positive rate (fallout)**: \( P(\hat{Y} = 1 \mid Y = -1) \); est: \( FP / N \)
- **True negative rate (specificity)**: \( P(\hat{Y} = -1 \mid Y = -1) \); est: \( FP / N \)
- **False negative rate (miss)**: \( P(\hat{Y} = -1 \mid Y = 1) \); est: \( FN / P \)
- **Precision (pos. predictive value)**: \( P(Y= 1 \mid \hat{Y} = 1) \); est: \( TP / (TP+FP) \)

### Confusion Matrix

<table>
<thead>
<tr>
<th>True class</th>
<th>1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>True positive (TP)</td>
<td>False positive (FP)</td>
</tr>
<tr>
<td>-1</td>
<td>False negative (FN)</td>
<td>True negative (TN)</td>
</tr>
</tbody>
</table>
Often the choice of a cutoff $c$ involves trading off two competing performance measures, e.g. TPR: $P(\hat{Y} = 1 \mid Y = 1)$ vs. FPR: $P(\hat{Y} = 1 \mid Y = -1)$.

Performance curves (ROC, sensitivity-specificity, precision-recall, lift charts, ...) are used to visualize this trade-off.
Classifier evaluation with ROCR

- Only three commands
  - `pred <- prediction(scores, labels)`
    - (pred: S4 object of class `prediction`)
  - `perf <- performance(pred, measure.Y, measure.X)`
    - (pred: S4 object of class `performance`)
  - `plot(perf)`

- Input format
  - Single run:
    - vectors (`scores`: numeric; `labels`: anything)
  - Multiple runs (cross-validation, bootstrapping, …):
    - matrices or lists

- Output format
  - Formal class `performance` [package "ROCR"] with 6 slots
    - ..@ x.name : chr "Cutoff"
    - ..@ y.name : chr "Accuracy"
    - ..@ alpha.name : chr "none"
    - ..@ x.values : List of 10
    - ..@ y.values : List of 10
    - ..@ alpha.values: list()
Example: Cross-validation of saquinavir resistance prediction with SVMs

```r
> library(ROCR)
> pred <- prediction(as.numeric(predictions[[1]]), true.classes[[1]])
> perf <- performance(pred, 'acc')
> perf@y.values
[[1]]
[1] 0.6024096 0.9397590 0.3975904
```

You will understand in a minute why there are three accuracies (the one in the middle is relevant here)

Works exactly the same with cross-validation data (give predictions and true classes for the different folds as a list or matrix) – we have already prepared the data correctly:

```r
> str(predictions)
List of 10
$: Factor w/ 2 levels "FALSE","TRUE": 2 1 2 2 1 1 2 2 1 1 ...
$: Factor w/ 2 levels "FALSE","TRUE": 2 2 2 2 1 1 1 1 2 2 ...
> pred <- prediction(lapply(predictions, as.numeric), true.classes)
> perf <- performance(pred, 'acc')
> perf@y.values
[[1]]
[1] 0.6024096 0.9397590 0.3975904
[[2]]
[1] 0.5903614 0.9638554 0.4096386
```
Examples (1/8): ROC curves

- `pred <- prediction(scores, labels)`
- `perf <- performance(pred, "tpr", "fpr")`
- `plot(perf, colorize=T)`
Examples (2/8): Precision/recall curves

- `pred <- prediction(scores, labels)`
- `perf <- performance(pred, "prec", "rec")`
- `plot(perf, colorize=T)`
Examples (3/8): Averaging across multiple runs

- `pred <- prediction(scores, labels)`
- `perf <- performance(pred, "tpr", "fpr")`
- `plot(perf, avg='threshold', spread.estimate='stddev', colorize=T)`
Examples (4/8): Performance vs. cutoff

- `perf <- performance(pred, "cal", window.size=50)`
- `plot(perf)`

- `perf <- performance(pred, "acc")`
- `plot(perf, avg= "vertical", spread.estimate="boxplot", show.spread.at= seq(0.1, 0.9, by=0.1))`
Examples (5/8): Cutoff labeling

- `pred <- prediction(scores, labels)`
- `perf <- performance(pred, "pcmiss", "lift")`
- `plot(perf, colorize=T, print.cutoffs.at=seq(0,1,by=0.1), text.adj=c(1.2,1.2), avg="threshold", lwd=3)`
Examples (6/8): Cutoff labeling – multiple runs

- `plot(perf,`  
  - `print.cutoffs.at=seq(0,1,by=0.2),`  
  - `text.cex=0.8,`  
  - `text.y=lapply(as.list(seq(0,0.5,by=0.05)),`  
    - `function(x) {`  
      - `rep(x,length(perf@x.values[[1]]))`,`  
    - `col= as.list(terrain.colors(10)),`  
    - `text.col= as.list(terrain.colors(10)),`  
    - `points.col= as.list(terrain.colors(10))`
Examples (7/8): More complex trade-offs...

- `perf <- performance(pred, "acc", "lift")`
- `plot(perf, colorize=T)`
- `plot(perf, colorize=T, print.cutoffs.at=seq(0,1,by=0.1), add=T, text.adj=c(1.2, 1.2), avg="threshold", lwd=3)`
Examples (8/8): Some other examples

- `perf <- performance(pred, 'ecost')`
- `plot(perf)`

- `perf <- performance(pred, 'rch')`
- `plot(perf)`
Extend environments

- `assign("auc", "Area under the ROC curve", envir = long.unit.names)`
- `assign("auc", ".performance.auc", envir = function.names)`
- `assign("auc", "fpr.stop", envir=optional.arguments)`
- `assign("auc:fpr.stop", 1, envir=default.values)`

Implement performance measure (predefined signature)

- `.performance.auc <- function (predictions, labels, cutoffs, fp, tp, fn, tn, n.pos, n.neg, n.pos.pred, n.neg.pred, fpr.stop) {
  
  }
`
Now....

- ...get ROCR from CRAN! 😊

- demo(ROCR) [cycle through examples by hitting <Enter>, examine R code that is shown]

- Help pages:
  - help(package=ROCR)
  - ?prediction
  - ?performance
  - ?plot.performance
  - '?prediction-class'
  - '?performance-class'

- Please cite the ROCR paper!

[HTML] ROCR: visualizing classifier performance in R
T Sing, O Sander, N Beerwenknel, T Lengauer - Bioinformatics, 2005 - Oxford Univ Press
Summary: ROCR is a package for evaluating and visualizing the performance of scoring classifiers in the statistical language R. It features over 25 performance measures that can be freely combined to create two-dimensional performance curves. Standard methods for investigating ...
Cited by 230 - Related articles - BL Direct - All 9 versions