UPC, Julio 2010

BASEL, October 2011

Juan Vicente Torres

Supervisors: Dr. Julio Secades

Dr. Erik Cobo

Departament d'Estadística i Investigació Operativa

UNIVERSITAT POLITÈCNICA DE CATALUNYA

🕞 ferrer

Content

- Introduction
- Methods
 - Patients
 - Treatment effect imputation
 - Assessed methods
- Results
- Conclusions

INTRODUCTION

- Stroke is the second most common cause of death and a major cause of disability worldwide.
- Although at least 178 randomized clinical trials were conducted for 75 promising agents, only 1 agent has been approved by the FDA/EMA (2001).

The gold standard for performing Phase III clinical trials has been to dichotomize the mRS as a good outcome (scores 0 or 1):

- 0 No symptoms.
- 1 No significant disability. Able to carry out all usual activities
- 2 Slight disability. Able to look after own affairs without assistance
- 3 Moderate disability. Requires some help
- 4 Moderately severe disability. Needs assistance
- 5 Severe disability. Requires constant care and attention
- 6 **Dead.**

Different alternatives have been proposed:

- 1. Shift Analysis [Savitz et al, 2007]:
 - Works with the full ordinal scale
- 2. Responder analysis [Berge et al, 2002]:
 - Dichotomizes the outcome taking into account the initial status of each patient.
- 3. Global recovery outcome [Dávalos, 2002]:
 - Considers simultaneously information from more than one recovery dichotomized variables.

Objective:

To assess the power of the most common statistical methods used in stroke clinical trials and other *alternatives*.

METHODS

<u>Scales</u>

- The modified Ranking Scale (**mRS**):
 - Measures disability or dependence in daily activities.
 - from 0 (perfect health) to 6 (death).
- The National Institute of Health Stroke Scale (**NIHSS**)
 - Measures neurological status.
 - from 0 (minimal) to 42 (severe deficit).
- The Barthel Index (**BI**)
 - Measures independence in personal care and mobility.
 - from 0 to 100 (independence) by steps of 5.
 - It was transformed as iBI = (100-BI)/5.

<u>Data</u>

- Pooling database grouping 4 clinical trials performed to assess the efficacy of oral citicoline.
- Applying new eligibility criteria, 1372 patients were selected, 789 randomized to citicoline and 583 to placebo.
- Only placebo data was employed in the simulations.

Addition of the treatment effect

- Using two different strategies:
 - Partial (or patient) level: OAST collaboration, 2008
 - Marginal (or population) level: Choi et al, 1998
- OR=1.20, 1.25, 1.30 and 1.35
- ORs under an ordinal logistic regression (proportional odds)

 $\frac{R}{C}$ Recerca Clínica

Based on an ordinal logistic regression model, a treatment effect is added redistributing the patients within the scores

Example:

tx / mRS	0 1		2	3	4	5	6	
					a	a		
Observed	16	16 , 30		, 47	, 72	, 20	55	
		-7 +12	-6 +18	-1 +19	+5 +14	+3 +11	+11	
Target	20.5 🎽	36.6	50.9	48.7	66.9	17.1	44.3	

Statistical methods to assess treatment effect

- Dichotomized mRS: mRS \leq 1 and mRS \leq 2.
- Full ordinal scale: t-test, Wilcoxon-Mann-Whitney test, ordinal logistic regression with proportional odds.
- Responder analysis as proposed by Adams et al. (2004) and Murray et al. (2005)
- A global ad-hoc version of the above methods is employed.
- The effect of adjusting for important prognostic variables in each method is also assessed.

Power and alpha estimation

• The power was obtained as the percentage of significant results over 10,000 iterations.

RESULTS

			Partial level								Marginal level							
						mR	S bef	ore t	eatme	ent effect addition								
			0	1	2	3	4	5	6		0	1	2	3	4	5	6	
eatment effect	OR = 1.20	0	16.0	12.2	14.5	9.8	5.3	4.1	3.1		100.0	7.7	1.1	0.2	0.0	0.0	0.0	
		1	17.6	15.5	17.9	13.8	8.9	6.8	5.5		0.0	92.3	12.4	2.0	0.3	0.1	0.0	
		2	17.3	16.6	18.1	16.0	12.3	9.6	8.7		0.0	0.0	86.5	13.7	1.8	0.5	0.1	
		3	18.1	18.7	18.6	19.1	18.1	14.8	15.2		0.0	0.0	0.0	84.2	10.8	3.2	0.4	
		4	18.8	21.5	18.7	23.5	28.1	27.2	30.1		0.0	0.0	0.0	0.0	87.2	25.2	2.9	
		5	4.1	5.0	4.0	5.5	8.0	9.4	9.9		0.0	0.0	0.0	0.0	0.0	71.0	7.9	
e ti		6	8.2	10.5	8.1	12.4	19.5	28.1	27.6		0.0	0.0	0.0	0.0	0.0	0.0	88.8	
th																		
nRS after adding	OR = 1.35	0	17.3	13.4	16.0	10.8	5.9	4.6	3.4		100.0	12.0	2.5	0.6	0.1	0.1	0.0	
		1	18.3	16.3	18.7	14.7	9.5	7.4	6.0		0.0	88.0	17.8	4.4	0.9	0.4	0.1	
		2	17.7	16.9	18.3	16.4	13.0	10.2	9.4		0.0	0.0	79.7	19. <mark>2</mark>	4.0	1.6	0.3	
		3	17.7	18.5	18.2	19.1	18.5	15.0	16.0		0.0	0.0	0.0	75.8	15.5	6.5	1.2	
		4	17.9	20.7	17.6	22.5	27.7	27.6	30.1		0.0	0.0	0.0	0.0	79.5	32.8	6.0	
		5	3.7	4.6	3.7	5.2	7.6	9.1	9.6		0.0	0.0	0.0	0.0	0.0	58.7	10.5	
2		6	7.3	9.5	7.4	11.3	17.9	26.0	25.4		0.0	0.0	0.0	0.0	0.0	0.0	81.9	

Correlations between the original and simulated outcomes

Recerca Clínica

Partial level

Marginal level

🕞 ferrer

Power comparison

Marginal level scenario

CONCLUSIONS

&

LIMITATIONS

jvtorres@dm-stat.com

Conclusions

- In Stroke trials, the analysis of ordinal scales might be improved by
 - taking into account the ordinal characteristic of the scales,
 - adjusting by prognostic variables,
 - incorporating information of other scales.
- Need to define a **formal** method to incorporate these three factors

Thanks!!

jvtorres@dm-stat.com

